Rutgers Business School
Newark and New Brunswick

An Introduction to Search Games

Thomas Lidbetter
Department of Management Science and Information Systems
Monday 25 th July 2022

Part I: Isaac's problem and Gal's solution Hide and seek on a network

- Rufus Isaacs (1965) Differential Games
- Shmuel Gal (1979) Search Games with Mobile and Immobile Hider
- Shmuel Gal (2000) On the Optimality of a Simple Strategy for Searching Graphs
- Steve Alpern (2011) A new approach to Gal's Theory of Search Games on Weakly Eulerian networks
- Steve Alpern, Thomas Lidbetter (2020) Search and delivery man problems: when are depth-first paths optimal?

Search for Immobile Hider on a Network

- Every arc a of a network Q has length $L(a)$
- Total length of Q is $L(Q)=\mu$
- Distance function d on Q is the "shortest path" metric

The game $\boldsymbol{G}=\boldsymbol{G}(\boldsymbol{Q}, \boldsymbol{O})$

- Pure strategy for Hider (maximizer): a point in Q (not necessarily a node)
- Mixed strategy h for Hider is a distribution over Q
- For $A \subseteq Q$, write $h(A)$ for the probability the Hider is in A
- Pure strategy for Searcher (minimizer) is a unit speed path $S(t), t \geq 0$ which covers Q
- Mixed strategy for the Searcher is a probability distribution over such paths
- The payoff is the search time $T=T(S, H)=\min \{t: S(t)=H\}$
- The function T is only lower-semicontinuous (uniform topology) but the game has a value $V=V(Q, O)$, optimal mixed Searcher strategies and ε optimal mixed Hider strategies.

Search higher density regions first

For a fixed Q and Hider distribution h, which has a lower expected search time: X, A, B, Y or X, B, A, Y ?

It turns out that the answer depends only on the search density ρ of A and B, where

$$
\rho(C)=h(C) / t(C)
$$

and $t(C)=$ time spent in C.

Search higher density regions first

Search density lemma: For a fixed Hider distribution h on a network Q, suppose S_{1} is a search of Q that can be written as X, A, B, Y and S_{2} is a search that can be written as X, B, A, Y, where X, A and B are disjoint. Then $T\left(S_{1}, h\right) \leq T\left(S_{2}, h\right)$ if and only if $\rho(A) \geq \rho(B)$, with equality if and only if the densities are equal.

Proof: Write T_{A} for the expected time spent to find the Hider in A, assuming he is in A. Similarly for T_{B}. Then

$$
\begin{aligned}
T\left(S_{2}, h\right)-T\left(S_{1}, h\right)= & h(B)\left(t(X)+T_{B}\right)+h(A)\left(t(X)+t(B)+T_{A}\right) \\
& -h(A)\left(t(X)+T_{A}\right)-h(B)\left(t(X)+t(A)+T_{B}\right) \\
= & t(A) t(B)\left(\frac{h(A)}{t(A)}-\frac{h(B)}{t(B)}\right) .
\end{aligned}
$$

Uniform Hider strategy

A mixed strategy always available to the Hider is the uniform strategy $h=u$ which hides in any subset A of Q with probability proportional to its length, that is $u(A)=L(A) / \mu$.

Lemma: For any (Q, O) and any S,

$$
T(S, u) \geq \mu / 2
$$

Hence, $V \geq \mu / 2$.
Proof: By time t, max. probability $F(t)$ of finding the Hider is t / μ, so

$$
T(S, u)=\int_{0}^{\infty} 1-F(t) d t \geq \int_{0}^{\mu} 1-\frac{t}{\mu} d t=\mu / 2
$$

Chinese Postman Tours

- A covering path S is called a tour if it ends back at O
- If a tour has minimum length, denoted $\bar{\mu}$, it is called a Chinese Postman Tour
- A tour is called Eulerian if it has length μ (traverses each edge exactly once)
- An Eulerian tour exists if all nodes have even degree (number of incident edges), in which case Q is called Eulerian and $\mu=\bar{\mu}$

Chinese Postman Tours

Example

CPT: achfbgdfebi

Chinese Postman Tours

Lemma: Any CPT of Q satisfies $\bar{\mu} \leq 2 \mu$ with equality only for trees.

Proof:

- Define Q^{\prime} by doubling every arc of Q (add another arc of the same length with the same endpoints)
- All nodes of Q^{\prime} have even degree so there is an Eulerian tour of length 2μ
- This is also a covering tour of Q
- If Q is not a tree it contains a circuit (closed path of distinct arcs), whose arcs we do not need to double

Random Chinese Postman Tours

Definition: Suppose that $S:[0, \bar{\mu}] \rightarrow Q$ is a CPT. Let S^{r} denote its reverse, given by $S^{r}(t)=S(\bar{\mu}-t)$. A Random Chinese Postman Tour (RCPT) s is an equiprobable mix of S and S^{r}.

Lemma: Let s be a RCPT on a network Q with root O. Then for any $H \in Q$, $T(s, H) \leq \bar{\mu} / 2$. Hence $V \leq \bar{\mu} / 2$.

Proof: Let t be such that $S(t)=H$. Then $T\left(S^{r}, H\right) \leq \bar{\mu}-t$. So

$$
T(s, H)=\frac{1}{2} T(S, H)+\frac{1}{2} T\left(S^{r}, H\right) \leq \frac{1}{2} t+\frac{1}{2}(\bar{\mu}-t)=\bar{\mu} / 2 .
$$

Bounds on $V=V(Q, O)$ for a general network

Theorem: For any network Q with root O, the value $V=V(Q, O)$ of the search game for an immobile Hider satisfies

$$
\frac{\mu}{2} \leq V \leq \frac{\bar{\mu}}{2} \leq \mu
$$

The lower bound is tight if and only if Q is Eulerian. The bound $V \leq \mu$ can only be tight if Q is a tree.

Equal Branch Density (EBD) Hider Distribution for Trees

Definition: The EBD Hider distribution is concentrated on the leaf nodes and at every branch node the search density of all branches is equal.

Depth-first search is a best response against the EBD

Lemma: Any depth-first search S is a best response against the EBD distribution, h and has expected search time $T(S, h)=\mu$.

Proof

(i) Any two depth-first searches S_{1} and S_{2} have the same expected search time because S_{1} can be transformed into S_{2} by successively swapping the order of search of equal density subtrees that share a root.
(ii) If S is any depth-first search and S^{r} is its time reverse search then for any leaf node v,

$$
T(S, v)+T\left(S^{r}, v\right)=2 \mu,
$$

so

$$
T(S, h)+T\left(S^{r}, h\right)=2 \mu,
$$

so

$$
T(S, h)=T\left(S^{r}, h\right)=\mu .
$$

(iii) Proof by contradiction that any depth-first search is a best response...

Depth-first search is a best response against the EBD

(iii) (continued) If a best response S is not depth-first, it must be of the form:

$\boldsymbol{V}=\boldsymbol{\mu}=\bar{\mu}$ for trees

Theorem: Let Q be a tree with root O. Then $V=\mu$.

Proof:

(i) $V \leq \bar{\mu} / 2=\mu$ (Searcher uses RCPT)
(ii) $V \geq \mu$ (Hider uses EBD distribution)

Other networks...

Arc-adding lemma: Let Q be a network and let Q^{\prime} be derived from adding an arc e of length $\ell \geq 0$ between points x and y on Q. Then

1. $V\left(Q^{\prime}\right) \leq V(Q)+2 \ell$ so $V\left(Q^{\prime}\right) \leq V(Q)$ if we identify x and y (i.e. $\ell=0$).
2. If $\ell \geq d_{Q}(x, y)$, then $V\left(Q^{\prime}\right) \geq V(Q)$. Any hiding strategy on Q does just as well on Q^{\prime}.

Other networks...

Arc-adding lemma: Let Q be a network and let Q^{\prime} be derived from adding an arc e of length $\ell \geq 0$ between points x and y on Q. Then

1. $V\left(Q^{\prime}\right) \leq V(Q)+2 \ell$ so $V\left(Q^{\prime}\right) \leq V(Q)$ if we identify x and y (i.e. $\ell=0$).

Proof: Replace every pure S used in an optimal strategy s by S^{\prime} which follows S until it reaches x, then tours e, then follows S again.

$$
T(s, z) \leq V(Q)+\ell \text { for } z \in e
$$

and

$$
T(s, z) \leq V(Q)+2 \ell \text { for } z \notin e
$$

Other networks...

Arc-adding lemma: Let Q be a network and let Q^{\prime} be derived from adding an edge e of length $\ell \geq 0$ between points x and y on Q. Then
2. If $\ell \geq d_{Q}(x, y)$, then $V\left(Q^{\prime}\right) \geq V(Q)$. Any hiding strategy on Q does just as well on Q^{\prime}.

Proof: Let h be optimal on Q. Let h^{\prime} on Q^{\prime} be same as h (don't hide in e). Note that for $H \in Q$,

$$
T_{Q^{\prime}}\left(S^{\prime}, H\right) \geq T_{Q}(S, H)
$$

where S is like S^{\prime} but replacing e with the shortest path from x to y in Q.

Other networks...

Proposition: The network Q drawn below has $V(Q)=\bar{\mu} / 2$.
Q

Proof:
$V\left(Q^{*}\right) \leq V(Q)$ by arc-adding lemma (1).
$V\left(Q^{*}\right) \geq V\left(Q^{* *}\right)$ by arc-adding lemma (2).
But $V\left(Q^{* *}\right)=\bar{\mu} / 2$ by the tree theorem, so
$Q^{* *}$
$\bar{\mu} / 2=V\left(Q^{* *}\right) \leq V\left(Q^{*}\right) \leq V(Q) \leq \bar{\mu} / 2$.

Weakly Eulerian networks

Definition: A network is weakly Eulerian if it contains a disjoint set of Eulerian networks such that shrinking each to a point transforms the network into a tree.
Equivalently, a network is weakly Eulerian if removing all disconnecting edges leaves a network with only even degree nodes.

Example

Weakly Eulerian networks

Definition: A network is weakly Eulerian if it contains a disjoint set of Eulerian networks such that shrinking each to a point transforms the network into a tree.
Equivalently, a network is weakly Eulerian if removing all disconnecting edges leaves a network with only even degree nodes.

Example

Weakly Eulerian networks

Theorem: The value of the search game on a network Q is $\bar{\mu} / 2$ if and only if Q is weakly Eulerian.

Proof $(\Longleftarrow): \quad \bar{\mu} / 2 \geq V(Q)$

Weakly Eulerian networks

Theorem: The value of the search game on a network \mathbf{Q} is $\bar{\mu} / 2$ if and only if \mathbf{Q} is weakly Eulerian.
$\operatorname{Proof}(\Longleftarrow): \quad \bar{\mu} / 2 \geq V(Q) \geq V\left(Q^{*}\right)$

Weakly Eulerian networks

Theorem: The value of the search game on a network \mathbf{Q} is $\bar{\mu} / 2$ if and only if Q is weakly Eulerian.
$\operatorname{Proof}(\rightleftharpoons): \quad \bar{\mu} / 2 \geq V(Q) \geq V\left(Q^{*}\right) \geq V\left(Q^{* *}\right)$

Weakly Eulerian networks

Theorem: The value of the search game on a network \mathbf{Q} is $\bar{\mu} / 2$ if and only if \mathbf{Q} is weakly Eulerian.
$\operatorname{Proof}(\Longleftarrow): \quad \bar{\mu} / 2 \geq V(Q) \geq V\left(Q^{*}\right) \geq V\left(Q^{* *}\right)=\bar{\mu} / 2$
$Q^{* *}$

The "Three arc" network

If the Searcher successively chooses unsearched arcs at random, then

$$
T(S, H)=\frac{1}{3}(1-x)+\frac{1}{3}(1+x)+\frac{1}{3}(3-x)=\frac{5-x}{3} \leq 5 / 3 .
$$

So $3 / 2 \leq V(Q) \leq 5 / 3$.

The "Three arc" network

$$
\mu=3, \bar{\mu}=4
$$

Theorem (L. Pavlovic): It is optimal for the Hider to choose x according to the p.d.f.

$$
f(x)=2 e^{-x}, 0<x<\ln 2 \approx 0.693
$$

It is optimal for the Searcher to go to A, go distance y towards O, back to A, to O on another arc, to A on the untraversed arc, where y is chosen according to the c.d.f.

$$
F(y)=\frac{1}{2}+\frac{e^{y}}{4}, 0 \leq y \leq \ln 2
$$

$V=(4+\ln 2) / 3 \approx 1.56$

Part II: Variations to the model

- Steve Alpern (2010) Search games on trees with asymmetric travel times
- Steve Alpern \& Thomas Lidbetter (2014) Searching a variable speed network
- Steve Alpern \& Thomas Lidbetter (2013) Mining coal or finding terrorists: the expanding search paradigm
- Steve Alpern (2011) Find-and-fetch search on a tree (2011)

Variable speed network (tree)

- Define EBD using tour times τ instead of lengths
- Define height $\delta(v)$ of a leaf node v as the difference between the time from O to v and the time from v to O.
- Define the incline Δ as the average height of a leaf node, weighted according to EBD.

Variable speed network (tree)

Theorem: The value of the variable speed search game is $\frac{\tau+\Delta}{2}$. The EBD is optimal for the Hider and it is optimal for the Searcher to use a probabilitistic "branching strategy".

Applications of variable speed: 1. Kikuta-Ruckle game

- Like the original Isaacs-Gal game, but the Hider can only hide at nodes and each node v has a search cost c_{v}.
- Searcher can either continue without searching a node or pay the search cost to search it.
- Replace search cost of c_{v} with a "variable speed" arc with outward travel time c_{v} and inward travel time 0.

Applications of variable speed: 2. Find-and-fetch

- Another variation on the classic model, where the Searcher has to return the Hider to the root (eg. search and rescue, foraging)
- Add a variable speed arc to each leaf node v with outward travel time equal $d(0, v)$ and inward travel time equal $-d(0, v)$.

Applications of variable speed: 3. Expanding search

- Searcher picks a sequence of $\operatorname{arcs} a_{1}, a_{2}, \ldots$ such that a_{1} is incident to the root and each a_{1} is incident to a node already reached.
- Suitable in cases where the cost to retrace your steps is negligible, eg. mining coal, searching for landmines.
- Can also model search with many searchers.
- For trees, this can be modeled by variable speed search: an arc of length a can be replaced by a variable speed arc with outward travel time a and inward travel time 0.

Part III: Search games with multiple hidden objects

- Hider hides k balls in n boxes
- Cost of searching box j is c_{j}
- Searcher looks in boxes one by one till finding all the balls
- Payoff is cost of finding all the balls.

Lemma: The Hider can make the Searcher indifferent between all her strategies by choosing a subset H of k boxes with probability $p^{*}(H)=$ $\frac{\Pi_{i \in H} c_{i}}{S_{k}}$, where $S_{k}=\sum_{|A|=k} \sum_{i \in A} c_{i}$.
All orderings have expected cost

$$
C-\frac{S_{k+1}}{s_{k}},
$$

Where $C=\sum_{j=1}^{n} c_{j}$.

Eg. $(k=3)$ This choice of H is picked with probability proportional to $3 \times 3 \times 2=18$.

Proof: For the ordering $1,2, \ldots, n$, the expected cost of boxes not searched is

$$
\sum_{j=k+1}^{n} c_{j} \sum_{H \in j-1]^{(k)}} p^{*}(H)=\sum_{j=k+1}^{n} c_{j} \sum_{H \in[j-1]^{(k)}} \frac{\Pi_{i \in H} c_{i}}{S_{k}}=\frac{S_{k+1}}{S_{k}} .
$$

Theorem: The value of the game is $V=C-\frac{s_{k+1}}{s_{k}}$. It is optimal for the Searcher to start by opening a subset H of k boxes with probability $p^{*}(H)$ and to open the remaining boxes in a (uniformly) random order. An optimal strategy for the Hider is p^{*}.

Proof:

- Restrict the Searcher to strategies of the form $s_{A}=$ "search all boxes in A then search the remaining boxes in a random order", where $|A|=k$.
- Then payoff of s_{A} against B is same as payoff of s_{B} against A for $|A|=$ $|B|=k$.

Expected search cost $=(7+2+6)$ $+3+1 / 2(3)$

Expected search cost
$=(7+3+2)$
$+6+1 / 2(3)$

In general

- All boxes in A and B must be searched. Remaining boxes are all searched with the same probability.
- So payoff matrix is symmetric
- Thus Searcher can use strategy p^{*} to make Hider indifferent between all his strategies. Both players indifferent \Rightarrow equilibrium.

